Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 28(9)2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37175192

RESUMEN

Squalene has been tested widely in pharmacological activity including anticancer, antiinflammatory, antioxidant, and antidiabetic properties. This study aims to examine antidiabetic activity of squalene in silico and in vivo models. In the in silico model, the PASS server was used to evaluate squalene antidiabetic properties. Meanwhile, the in vivo model was conducted on a Type 2 Diabetes Mellitus (T2DM) with the rats separated into three groups. These include squalene (160 mg/kgbw), metformin (45 mg/kgbw), and diabetic control (DC) (aquades 10 mL/kgbw) administered once daily for 14 days. Fasting Blood Glucose Level (FBGL), Dipeptidyl Peptidase IV (DPPIV), leptin, and Superoxide Dismutase (SOD) activity were measured to analysis antidiabetic and antioxidant activity. Additionally, the pancreas was analysed through histopathology to examine the islet cell. The results showed that in silico analysis supported squalene antidiabetic potential. In vivo experiment demonstrated that squalene decreased FBGL levels to 134.40 ± 16.95 mg/dL. The highest DPPIV level was in diabetic control- (61.26 ± 15.06 ng/mL), while squalene group showed the lowest level (44.09 ± 5.29 ng/mL). Both metformin and squalene groups showed minor pancreatic rupture on histopathology. Leptin levels were significantly higher (p < 0.05) in diabetic control group (15.39 ± 1.77 ng/mL) than both squalene- (13.86 ± 0.47 ng/mL) and metformin-treated groups (9.22 ± 0.84 ng/mL). SOD activity were higher in both squalene- and metformin-treated group, particularly 22.42 ± 0.27 U/mL and 22.81 ± 0.08 U/mL than in diabetic control (21.88 ± 0.97 U/mL). In conclusion, in silico and in vivo experiments provide evidence of squalene antidiabetic and antioxidant properties.


Asunto(s)
Diabetes Mellitus Tipo 2 , Metformina , Ratas , Animales , Hipoglucemiantes/farmacología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Escualeno/farmacología , Leptina , Antioxidantes/farmacología , Metformina/farmacología , Superóxido Dismutasa , Glucemia/análisis , Extractos Vegetales/farmacología
2.
Pharm Nanotechnol ; 9(5): 339-346, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34886791

RESUMEN

INTRODUCTION: Mikania micrantha has been traditionally used for wound dressings and to promote the healing of sores. This is due to the content of alkaloids and terpenoids/steroids compounds. Hyperglycemia is a good medium for bacterial growth that inhibits the wound healing process. PURPOSE: This study aimed to determine the wound healing of nanogels containing MMLE in hyperglycemic rats as a model for diabetic wounds. METHODS: Mikania micrantha leaves were extracted with the maceration method using 96% ethanol in 5 days. Carbopol 940 was used as the gelling agent. The parameters observed during the physical testing of nanogels were organoleptic, homogeneity, pH, and size of the particle. Antibacterial activity was tested on Staphylococcus aureus, Staphylococcus epidermis, and Escherichia coli. Moreover, wound healing activity was tested in hyperglycemic rats after observing for 14 days. Diabetic wound healing was treated with 4 groups (P1, P2, K1, K2). Data were analyzed using SPSS. RESULTS: Nanogel showed homogeneity, dark green color, transparency, pH 6.1± 0.1, and particle size range in 255-456 nm. The inhibition zones of antibacterial testing, i.e., Staphylococcus aureus, Staphylococcus epidermis, and Escherichia coli, were 10.57 ± 0.26 mm, 9.73 ± 0.21 mm, and 8.4 ± 0.1 mm. The percentage of diabetic wound healing was in the range of 92.79±3.81% to 94.08 ± 2.33% for 14 days of observation. CONCLUSION: MMLE nanogels have the potential as a treatment for diabetic wound healing.


Asunto(s)
Mikania , Animales , Pruebas de Sensibilidad Microbiana , Nanogeles , Extractos Vegetales , Hojas de la Planta , Polietilenglicoles , Polietileneimina , Ratas , Cicatrización de Heridas
3.
Front Pharmacol ; 12: 643119, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33995049

RESUMEN

Curcuma species (family: Zingiberaceae) are widely utilized in traditional medicine to treat diverse immune-related disorders. There have been many scientific studies on their immunomodulating effects to support their ethnopharmacological uses. In this review, the efficacy of six Curcuma species, namely, C. longa L., C. zanthorrhiza Roxb., C. mangga Valeton & Zijp, C. aeruginosa Roxb. C. zedoaria (Christm.) Roscoe, and C. amada Roxb., and their bioactive metabolites to modulate the immune system, their mechanistic effects, and their potential to be developed into effective and safe immunomodulatory agents are highlighted. Literature search has been carried out extensively to gather significant findings on immunomodulating activities of these plants. The immunomodulatory effects of Curcuma species were critically analyzed, and future research strategies and appropriate perspectives on the plants as source of new immunomodulators were discussed. Most of the pharmacological investigations to evaluate their immunomodulatory effects were in vivo and in vitro experiments on the crude extracts of the plants. The extracts were not chemically characterized or standardized. Of all the Curcuma species investigated, the immunomodulatory effects of C. longa were the most studied. Most of the bioactive metabolites responsible for the immunomodulating activities were not determined, and mechanistic studies to understand the underlying mechanisms were scanty. There are limited clinical studies to confirm their efficacy in human. Of all the bioactive metabolites, only curcumin is undergoing extensive clinical trials based on its anti-inflammatory properties and main use as an adjuvant for the treatment of cancer. More in-depth studies to understand the underlying mechanisms using experimental in vivo animal models of immune-related disorders and elaborate bioavailability, preclinical pharmacokinetics, and toxicity studies are required before clinical trials can be pursued for development into immunomodulatory agents.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA